
Methodologies for Advance Warning of Compute Cluster
Problems via Statistical Analysis: A Case Study∗

Jim Brandt
Sandia National Laboratories

MS 9159, P.O. Box 969
Livermore, CA 94551 U.S.A

brandt@sandia.gov

Ann Gentile
Sandia National Laboratories

MS 9152, P.O. Box 969
Livermore, CA 94551 U.S.A

gentile@sandia.gov

Jackson Mayo
Sandia National Laboratories

MS 9159, P.O. Box 969
Livermore, CA 94551 U.S.A

jmayo@sandia.gov
Philippe Pébay

Sandia National Laboratories
MS 9159, P.O. Box 969

Livermore, CA 94551 U.S.A
pppebay@sandia.gov

Diana Roe
Sandia National Laboratories

MS 9152, P.O. Box 969
Livermore, CA 94551 U.S.A

dcroe@sandia.gov

David Thompson
Sandia National Laboratories

MS 9159, P.O. Box 969
Livermore, CA 94551 U.S.A
dcthomp@sandia.gov

Matthew Wong
Sandia National Laboratories

MS 9152, P.O. Box 969
Livermore, CA 94551 U.S.A
mhwong@sandia.gov

ABSTRACT
The ability to predict impending failures (hardware or soft-
ware) on large scale high performance compute (HPC) plat-
forms, augmented by checkpoint mechanisms could drasti-
cally increase the scalability of applications and efficiency
of platforms. In this paper we present our findings and
methodologies employed to date in our search for reliable,
advance indicators of failures on a 288 node, 4608 core,
Opteron based cluster in production use at Sandia National
Laboratories. In support of this effort we have deployed
OVIS, a Sandia-developed scalable HPC monitoring, anal-
ysis, and visualization tool designed for this purpose. We
demonstrate that for a particular error case, statistical anal-
ysis using OVIS would enable advanced warning of cluster
problems on timescales that would enable application and
system administrator response in advance of errors, subse-
quent system error log reporting, and job failures. This is
significant as the utility of detecting such indicators depends
on how far in advance of failure they can be recognized and
how reliable they are.

Catagories and Subject Descriptors: C.4 [Computer
Systems Organization]: Performance of Systems – fault tol-
erance, reliability, availability, and serviceability ; D.2.8 [Soft-
ware Engineering]: Metrics – complexity measures, perfor-

∗This work was supported by the United States Depart-
ment of Energy, Office of Defense Programs. Sandia is a
multiprogram laboratory operated by Sandia Corporation,
a Lockheed-Martin Company, for the United States Depart-
ment of Energy under contract DE-AC04-94-AL85000.

Copyright 2008 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
Resilience’09, June 9, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-593-2/09/06 ...$5.00.

mance measures, process metrics; G.3 [Probability and Statis-
tics]: Statistical computing

General Terms: Reliability, Performance

Keywords: reliability, RAS, fault tolerance, failure predic-
tion

1. INTRODUCTION
Resource failures on high performance compute (HPC)

platforms can be catastrophic for large MPI based scientific
simulations as MPI is currently not robust to loss of compute
resources and such loss typically results in the application
hanging until external intervention, typically in the form of
killing the application and re-queuing it, takes place. Be-
cause, to date, such failure events have been asymptomatic
the only way for an application to make progress is to check-
point based on the statistical probability of resource failure
given the number of resources being employed by the ap-
plication and the historic resource failure rate of the plat-
form being used. Additionally, since it is generally un-
known (see Section 2) which resource(s) are more likely to
fail, checkpoints must be saved for all compute resources
which may, for large applications, require substantial net-
work bandwidth, storage bandwidth, and time.

Our tool OVIS [4], in development at Sandia National
Laboratories, for scalable data collection, analysis, and vi-
sualization of high performance compute platforms has been
deployed on Sandia’s Glory cluster, an Opteron quad core
based cluster with an infiniband interconnect. This is a proof
of concept deployment on a production HPC platform to
explore our premise that anomalous behavior, in particu-
lar, statistical outliers with respect to system characteris-
tics, could provide early indication of problems that would
eventually manifest themselves in resource failure. Defin-
ing statistical outliers is a difficult problem as many system
characteristics are convolved with others that can’t easily be
extricated and used for normalization. One example is the

complex interaction between CPU temperature, CPU uti-
lization, fan speed, and cooling air temperature where CPU
temperature is driven by CPU utilization, intake air tem-
perature, and fan speed as well as other confounding factors
such as voltage and clock speed. Another example, and one
that we address in this particular case study, is memory uti-
lization by an application, whose memory requirements are
a priori unknown to the system, convolved with operating
system memory needs and perhaps current or pending I/O
memory needs. In order to deal with these different scenar-
ios OVIS employs a variety of analysis mechanisms such as
descriptive statistics, multi-variate correlative analysis, and
Bayesian inference which are discussed further in Section 3.

This paper is divided as follows: Section 1 gives an in-
troduction and the motivation for this work, Section 2 dis-
cusses related work, Section 3 discusses our approaches and
methodologies, Section 4 covers the Glory case study to date,
and Sections 5 and 6 contain summary and conclusions.

2. RELATED WORK
Although HPC systems have grown tremendously in scale

and complexity, the underlying component robustness has
not improved significantly [8]. Therefore as systems grow
and application runs span larger numbers of components,
the mean time to failure of some component involved is de-
creased. There is work (e.g., [8, 12]) that projects such
failures to be so frequent on exa-scale systems that large
applications utilizing substantial fractions of the platforms
will not be able to make forward progress as they will be
unable to perform enough work and checkpoint it before
a failure occurs. By enabling preemptive action targeting
only affected resources, failure prediction, if accurate, could
significantly improve overall system and application perfor-
mance for large HPC systems.

The majority of predictive work done in this area has fo-
cused on classification of types of failures, their symptoms,
and their temporal distributions. Leangsuksun, Scott et
al [10] have analyzed failures on the ASC White machine
at LLNL in order to come up with an algorithm for calcu-
lating a predicted time to failure for a system of nodes each
with a known failure history. Oliner, Sahoo et al [13] have
done a study on LLNL’s BlueGene/L similar in nature. Fu
and Xu [9] have analyzed nine years worth of failure and log
data collected at LANL [1] and written a framework for uti-
lizing this data to classify failure types and their temporal
distributions. Using this framework allows classification of
recent history behaviors and hence prediction of related fail-
ure distributions over near future time windows. Schroeder
et al [14] have also done an in depth study and modeling
work on the same data sets in order to classify and pro-
vide models for failure types and modes on HPC systems.
Schroeder et al [15] also have done work in not only fail-
ure rate projection but also strategies for coping with such
failures in peta-scale sized platforms. This body of work
uses historic failure data collected from log files to make
mean time to failure (MTTF) predictions which can increase
system and application performance by allocating resources
based on an application’s size and expected run time and al-
lowing the application to optimize its checkpointing strategy
based on the projected MTTF for that pool of resources.

There is another body of work that attempts to discover
impending failure of resources on a per resource basis based
on discovering signatures of pre-failure conditions and de-

tecting them in real time with sufficient time margin for the
system and/or application to react before the failure occurs.
Stearley and Oliner [16] take this approach in their use of
frequency analysis and sorting of words and word group-
ings from system log files. Sahoo et al [11] explore using
occurrences of non-fatal events in log data to predict fatal
ones. Our OVIS project (see for example, [4] and references
therein), rather than using log files to look for signatures
associated with failure, uses raw data such as voltages, tem-
peratures, fan speeds, memory utilization etc. in order to
discover behaviors of raw events that may either singly or as
an aggregate give indication of failures earlier than log data,
the latter of which by nature means that a reportable event
has already occurred. We only use log files as a guide to
what kinds of failures occur and hence the combinations of
metrics in which to look for such signatures. The premise of
our work is that anomalous behavior in these metrics could
be a precursor to resource failure [7] and used within an
information-sharing infrastructure to provide warnings and
resource management decisions [5].

Beyond the work to utilize data, whatever the source,
to predict failures or failure trends, is the work support-
ing this in the form of data sources and access to these.
These range from tools such as Ganglia [3] to failure reposi-
tories being set up to give researchers access to historic data
to help them solve these difficult problems. In addition to
the LANL repository cited above, Schroeder et al [15] have
put up such a repository called the Computer Failure Data
Repository [2].

3. APPROACHES AND METHODOLOGIES
The OVIS user interface, shown in Figure 1 (last page)

consists of a components list (on the left), each of which
has a sub-list of metrics associated with the component.
In the case of Glory the only component with associated
metrics currently is the node. A rendering of the system
components in a 3D physical view allows for coloring the
components based on associated metrics either raw or de-
rived. This physical view (in the center) can be zoomed,
translated, and rotated. This visualization allows the user
to easily identify patterns (e.g. thermal gradients) as well
as extreme outliers in the raw metrics (e.g. all but one com-
ponent at extreme of color scale if auto-scaling) or relative
to a calculated model (e.g., outliers outside of a probabilis-
tic threshold are colored red, while those within are colored
green; alternatively, outliers may be colored blue or red to
indicate if they are outside of the probabilistic range due to
the high vs low values relative to the model). It also can en-
hance understanding of how events unfold temporally as it
allows the user to scroll through time and play back historic
data. An analysis pane is shown on the right.

The current analytic capabilities of OVIS are described
below though few of them were utilized in this case study
due to the nature of the problem (only required analysis of
one metric). It is expected, however that other major prob-
lems such as power supply failure and CPU failure could
benefit from several of these capabilities used in conjunc-
tion. Besides the particulars of the statistical analyses de-
scribed below, the overarching features of OVIS that make
the rest truly useful for real time monitoring and analysis
are its scalability and robustness to failures. OVIS uses a
distributed database for both collection and parallel analy-
sis. The underlying communication mechanisms for analysis

are not MPI based and are robust to individual failures in
the distributed system. Loss of one database entity (if the
distributed feature is being used) results only in loss in fi-
delity of the result(s) and not loss of a result. (For details
of the OVIS architecture see [6].)

There are currently three types of analyses supported by
OVIS, each having the option to be run using either the
learn or monitor modes of operation1. In learn a model is
calculated or inferred from unmodified data. Such a model
can take several forms, such as statistical moment estima-
tors, PDFs, etc.. In monitor the roles are here interchanged
with those of the learn mode: the data is now assessed with
respect to a given model. The output of the monitor mode
is a collection of outliers, described in a way that allows for
unambiguous and efficient retrieval of the particular compo-
nents and times to which these correspond; the output may
also be presented as an ordered list so as to reflect a gra-
dation in severity or abnormality of behavior. The output
may also be seen in the physical view, where components
values at the displayed time can be compared to the calcu-
lated model and colored accordingly. Note that reportable
cases may occur either when a particular event diverges from
the model by more than what has been set as acceptable or
because no (or fewer than specified) events of a particular
type occurred. For instance, outliers – which may be defined
in several ways depending on the type of model being used
– can be identified as elements of the data set that deviate
from what the model predicts within pre-defined acceptabil-
ity bounds.

Within this framework, the currently available engines are
the following:
Descriptive statistics: In learn mode, descriptive statis-
tics of the data set of interest are calculated (estimators of
the mean, standard deviation, skewness, kurtosis, as well as
bounds). These statistics can be interpreted directly by the
user, or be used as input parameters to the monitor mode of
the descriptive engine itself or even of another engine, e.g.,
to complement expert knowledge prior to Bayesian parame-
ter estimation. In monitor mode, relative distance in terms
of mean and standard deviation (which, as indicated, may
be the result of a prior learn stage) is the criterion according
to which outliers are detected, based on user-specified prob-
abilistic thresholds.
Multivariate Correlative statistics: The goal of this en-
gine is to seek anomalous behaviors by calculating (in learn
mode) or devising (with “expert knowledge”) multivariate
correlation statistics, via mean vectors and covariance matri-
ces – and thus, implicitly, a multiple linear regression model
– for a set of tuples of variables of interest, and examining
(in monitor mode) how individual observations of these tu-
ples of variables of interest deviate from the aforementioned
model. Such deviations are characterized in terms of the
the multivariate Mahalanobis distance computed with the
mean vector and covariance matrix. This is especially use-
ful to prevent the user from conducting more advanced and
costly analysis such as running a Bayesian engine when lin-
ear correlation between metrics can be evinced.
Bivariate Bayesian: In learn mode, the parameters of a
probabilistic model that describes the dependency of a met-
ric on another are inferred from the input data viewed as

1Note that a third mode, validate also exists but is currently
implemented only for the Bayesian engine and is thus not
discussed here.

training data. In this mode, a parametric model as well as a
prior must be provided to the analysis engine before the cal-
culation can proceed; the descriptive and correlative analysis
engines are useful here since they allow the user to come up
with a “first cut” that is not completely uninformed – thus
ensuring faster parameter identification and/or better accu-
racy. The monitor mode calculates the likelihood of the data
as it is sifted through the model with its parameter values
provided as an input, for instance after they have been cal-
culated in learn mode with “trustable” training data. Details
of the Bayesian engine methodology are outside the scope of
this paper, but suffices to say that it is here in the context
of this paper to allow the user to construct models of spatial
gradients due to environmental effects but is applicable to
modeling of other bi-variate dependencies.

4. GLORY CLUSTER CASE STUDY ON
MEMORY RELATED FAILURES

Sandia‘s Glory cluster is a 288 node, 4608 core Opteron
cluster with an Infiniband interconnect. Discussions with
the system administrators and examination of log files indi-
cated that the majority of failures in this system stem from
three causes — power supply failure, running out of mem-
ory, and a core ceasing to function. Of these failure modes
the most prevalent appears to be running out of memory
hence this paper describes our memory related analysis and
results for this platform.

As mentioned in Section 3, OVIS collects numeric data
from many sources. In the case of Glory, due to the nature
of the instrumentation, we collect all numeric information
in band from the following sources: LM sensors — voltages,
temperatures, fan speeds, /proc — memory related metrics,
and EDAC — memory error metrics on a per-Dimm basis.
Because we collect data in band we are limited by the sys-
tem administrator to a collection period of once a minute so
as to not perturb running applications. Additionally we col-
lect text data from Glory‘s SLURM database as well as con-
sole logs to discover application/node mappings and failed
nodes/application runs. The latter information is needed
in order to correlate anomalous behaviors/characteristics in
the numeric data with failures in the system.

The end goal is to discover anomalous behavior in some
metric(s) that precede failure of a resource far enough in
advance and with enough reliability that knowledge of the
behavior could allow the system and/or application to take
pro-active action to save appropriate state and initiate a
lower impact recovery than is traditionally possible by dis-
covery at or after the time of failure.

In this section we discuss the process by which we estab-
lished that there is such an anomalous behavior, that the
behavior is indeed an indicator of the failure that is occur-
ring, and that there are statistical analyses that can be used
for automated discovery of indicators that precede the fail-
ure on reactable timescales.

4.1 Establishment of the Behavioral Precur-
sor of Failure

4.1.1 General Statistical Consideration
Since we were looking for metric behavior indicative of an

impending out of memory condition we chose to first investi-
gate the Active Memory metric taken from /proc/meminfo.

Figure 2: Learn tab for descriptive statistics, compo-
nent type “node”, and metric Active Memory. The
Components box and the Start and End times re-
spectively specify which components (all 288 nodes
in this case) and time interval over which data will
be used as an input to the analysis. Results of the
analysis are displayed in the Result box.

ActiveMemory was used in preference to MemFree, the lat-
ter of which includes cache and Inactive memory in addition
to the application’s Active Memory.

Using data collected over a sixteen day period we first per-
formed a descriptive statistics “Learn” analysis (described in
Section 3) on the Active Memory metric over this whole pe-
riod and over all nodes (Figure 2) irrespective of what was
running on the cluster. The reason for using this simple
single variable analysis first (as opposed to using the multi-
variate correlation engine and all memory related metrics) is
that it is computationally lighter weight and involves fewer
database accesses. A subsequent “Monitor” analysis (Fig-
ure 3) established a list of nodes that were exhibiting outlier
behavior in the Active Memory metric and at what times
that behavior occurred to direct us in further analysis. Note
that error log file information would only give us times of
the actual out of memory (OOM) event, and not of previ-
ous outlier behavior. Note also that outlier behavior in this
metric considered alone is not sufficient to establish it as a
meaningful abnormality, because the memory utilization is
strongly dependent upon the job and machine state.

4.1.2 Time-Dependent Behavior
We next investigated the temporal behaviors of Active

Memory on nodes seen to be outliers in the aforementioned
analysis (Figure 3) where we defined an outlier as anything

Figure 3: Monitor tab for descriptive statis-
tics. Outliers are displayed in the Result boxes.
The outlier threshold (number of standard devia-
tions) is specified in the box to the right of De-
viation. A value outside of (ReferenceV alue) ±
(ThresholdxDeviation) will be flagged as an outlier

greater than or equal to five standard deviations from the
group mean. The following shading conventions are used
in all Active Memory plots referenced in this section: yellow
shaded regions represent time periods in which the nodes be-
ing represented have no job running on them, pink shaded
regions represent a period over which there was a job sched-
uled that resulted in a failed job event in the scheduler logs,
and gray shaded regions represent a time period over which
a job either ran to completion or was canceled by the user.
The Y axis on all plots is the fraction of available system
memory that is designated as Active. The X axis is the
time (Note that this is Pacific time, the time zone of the au-
thors, rather than the time zone of the Glory cluster which
is in Mountain time).

Figure 4 is a plot of Active Memory on Glory node 228,
which was flagged as an outlier in the previous analysis,
over a time period when it was both flagged as an outlier
in this metric and had an OOM event. During the time
preceding the first idle region a particular user, designated
here as user A, has an application running on this node
(unshaded). Subsequent to the first idle region, A continues
to run applications on this node (alternates with another
user)(unshaded) until the rightmost idle region.

There are two items of interest in this case. One is that
during the rightmost idle period an OOM event, represented
by the red x, occurs on this node resulting in the death of
a process belonging to A even though all state instantiated

Figure 4: Active Memory for Glory node 228 (shown
in green) normalized to the total system memory
(32GB) for the time interval of 0500 to 1100 on
February 23, 2009. Idle periods on the nodes are
shaded in yellow. Node not responding log events
are indicated by a red +; out-of-memory events re-
sulting in killed processes are indicated by the red x.
Note that Active Memory remains high, even dur-
ing idle periods, and that user processes are killed
during idle periods.

by a user should have been removed upon exit. The second
is that during all idle periods, until the OOM event, this
node’s Active Memory value remains unexpectedly high.

In Figure 5, a similar plot for Glory node 234 which was
also flagged as an outlier during this period, it can be seen
that, as on node 228, there is a high Active Memory uti-
lization during some of the idle periods. Additionally there
are many OOM events occurring during the idle regions on
the right side of the figure, many of which involve the death
of processes belonging to an earlier user, also A, but which
include system processes as well. Most jobs landed on this
node in this region of time fail (pink regions) and are not
those of user A.

Finally, Figure 6 shows four nodes, one (node 279, green)
of which was used by yet another user C (during the time
shaded in dark gray) and left in an idle state with a high
amount of Active Memory. Upon a subsequent job of user
D shared by this and three other nodes, the Active Memory
on node 279 is abnormally high compared with that of the 3
other nodes. Note that the increase in memory is the same
for all four nodes involved in D‘s job as one would expect
for a well-balanced job.

In this case the high amount of Active Memory while in
an idle state does not result in an OOM related death for the
follow-on job because the memory requirements for that job
did not cause the Active Memory value to reach the OOM
threshold, and hence D‘s job was able to run to completion.

These examples indicate that some users’ processes and/or
allocated memory are not being properly cleaned up by the
system upon job completion/exit resulting in unintention-
ally high Active Memory utilization during subsequent jobs.
While these initial jobs may complete normally, follow-on
jobs may not. The combination of the memory utilization
of the previous processes and the current job’s processes can

Figure 5: Active Memory for Glory node 234 (shown
in green) normalized to the total system memory
(32GB) for the time interval of 08:00 to 12:30 on
February 23, 2009. Idle periods are shaded in yel-
low, canceled or complete jobs are shaded in gray,
failed jobs are shaded in pink. Note that Active
Memory remains high, even during idle periods, and
that user processes are killed due to OOM events
(red x) during idle periods.

result in sufficient memory utilization to invoke the OOM
condition.

We do not yet know if this is a system problem (mem-
ory leaks) triggered by some user memory access patterns
or is simply a problem of cleanup after job completion (ev-
erything not belonging to root should be terminated but is
not). However, our goal in this work is to identify precursors
of this failure scenario that can be discovered automatically,
and with enough advance warning to allow for mitigating
intervention.

4.1.3 Advanced Automated Discovery of Potentially
Failure Conditions

In order to achieve automated advanced discovery of this
type of problem, we cannot use as an indicator merely a
memory threshold for flagging problems because we do not
know a priori the expected memory requirements of any par-
ticular job.

Thus there are two possible methods that we can use. The
easiest would be to look for Active Memory outliers during
idle time and address these by appropriate system cleanup
(reboot if necessary) before allocation to job requests. In
Figure 7 it is clear that four of the fourteen nodes that share
an idle time (shaded in yellow) are abnormally high in their
Active Memory metric. Descriptive statistical analysis of
the Active Memory of all fourteen nodes during this time
returns a mean value of 3.6GB with minimum utilization
of 0.2 G and maximum utilization of 15GB and a standard
deviation of 5GB. In contrast, a similar analysis over the
only the ten well behaved nodes during the same period re-
sults in a mean value of 0.7GB with minimum utilization
of 0.2GB and maximum utilization of 1.2GB, with a stan-
dard deviation of 0.2GB. In the first case, mostly due to
the fact that the distribution is highly skewed towards the
right, in particular because of the relatively large number

Figure 6: Active Memory normalized to the total
system memory for the time interval of noon Febru-
ary 18, 2009 through noon February 23 for node 279
(shown in green). The dark gray time range corre-
sponds to a previous job on node 279 only. The time
range unshaded (white) corresponds to idle time on
node 279. Note that Active Memory is abnormally
high on node 279 during the shared job.

of true outliers on that side, using standard deviations as a
means to evince outliers is not conclusive: for instance, only
a single true outlier lies farther than two standard devia-
tions off the sample mean. In the second case, however, all
four true outliers are flagged as outliers even with a thresh-
old of five standard deviations from the mean. Using the
second case as a reference distribution we use OVIS’s mon-
itor mode and display to show the nodes flagged as outliers
in this sample group (see Fig. 8). In general application of
this method we expect that with consideration of all nodes
the majority would be well behaved during idle and so we
would expect the reference distribution to resemble the sec-
ond case (i.e., reasonably low mean and small standard de-
viation).

High values of Active Memory during idle time, either
in comparison with other idle nodes, or learned models of
Active Memory usage on idle systems, can indicate nodes
with unintentionally excessive Active Memory before a sub-
sequent job is placed upon that node, allowing appropriate
action to be taken to clear the condition and thus avoid fu-
ture failure. This type of analysis could have discovered the
problem in node 228 shown in Figure 4 at the time of the
first idle period in that figure, more than 2 hours before the
first indication of a problem in the log file.

The other method would be to assume that most dis-
tributed applications are reasonably balanced (possibly ex-
cluding MPI rank(0)) in Active Memory across all com-
pute resources in which case doing the same type of anal-
ysis would flag problematic nodes early on in the applica-
tion run, as was the case in the Figure 6. Although this
method may detect meaningful outliers, practical applica-
tion of this method has two drawbacks: 1) the statistical
methods employed rely on a statistically significant sample
size and hence would only work well for jobs employing a rea-
sonably large number of resources and 2) pro-active response
would require a mechanism for feeding this information back

Figure 7: Active Memory during a shared idle time
(shaded in yellow) on a subset of nodes normalized
to the total system memory (32GB) on the day of
February 23, 2009. Note that active memory is high
during a subset of nodes during the idle time.

Figure 8: OVIS Screenshot of monitor analysis to
determine outlier behavior in the nodes in Figure 7.
Nodes shown in green fit the learned model; nodes
shown in blue have Active Memory values outside
the allowable range for the model. Analysis results
correspond to those obtained in Figure 7.

to the running application (vs. the idle time analysis that,
through interaction with the scheduler, would prevent a job
from landing on a problematic node).

In either case, both methods will require the monitoring
system to directly incorporate resource state information in
order to perform such ongoing analysis (an OVIS feature in
development).

Such monitoring and analysis when used to evaluate po-
tential compute resources for allocation in terms of their
Active Memory metrics relative to a reference distribution
learned over all idle nodes can provide a probabilistic basis
for“healthy”(in terms of this metric) node allocation. In the
cases studied over this sixteen day period such health based
allocation would have eliminated the majority of OOM re-
lated job deaths (there were a few that were due to appli-
cations that were attempting to use more memory than was
available) and thus increased system efficiency.

5. SUMMARY
We have investigated out of memory (OOM) related fail-

ures in Sandia’s Glory cluster, a 288 node quad core Opteron
cluster with an Infiniband interconnect, using hardware re-
lated metrics collected over a sixteen day period (using our
monitoring, analysis, and visualization tool OVIS), system
logs, and resource manager logs in order to determine whether
or not there are mechanisms that could be used to give ad-
vanced warning of impending OOM related failures in time
for the system to react. We discovered that the major-
ity of OOM related failures occurring on the cluster over
this period could have been prevented by not allocating re-
sources exhibiting anomalous behavior in the Active Mem-
ory metric during the idle time preceding the allocation.
Further we discovered that after various users’ codes exit
large amounts of Active Memory are still retained by the
compute resources. Resources left in such a state correlate
well with OOM related job failure on subsequent jobs. Fi-
nally, we have shown that statistical consideration of the
Active Memory utilization over the cluster, over groups of
nodes sharing jobs, and over idle time, is a methodology that
can be used for automated outlier detection that would give
indication of this problem in advance of failure on affected
nodes.

6. CONCLUSIONS
We have discovered advance indicators of OOM related

problems that can be utilized in various ways by the sys-
tem, application, or a combination to largely mitigate these
problems; however, we have not discovered the root cause of
these OOM related problems. Some work should be done to
try to discover the root cause of the problem and if possible
fix it. In the absence of such an investigation and fix the next
best thing would be to detect it during idle time on resources
so that the condition can be cleared before the resource is
allocated. In order to detect the condition, one could set
an absolute threshold for Active Memory based on average
memory use over a large number of nodes known to be idle
(such as during system time after a system reboot). This
method could run into difficulty as memory use may change
during operation or due to to system configuration changes.
A more robust method would be to sample this metric on
each node upon job completion when it enters the idle state
and build a learned model (which can evolve with system
changes) from these samples over the whole cluster. Setting
a probabilistic threshold relative to this learned model would
allow flagging of outliers that would not be released into the
pool of allocatable resources until it had been returned to a
normal operational state.

7. ACKNOWLEDGMENTS
The authors would like to thank Jerry Smith of Sandia

National Laboratories for his assistance in deploying OVIS
on the Glory cluster and providing access to and direction
in the use of system tools, databases, and log files.

8. REFERENCES
[1] Data used in the referenced study was obtained from.

http://www.lanl.gov/projects/

computerscience/data/, 2006.

[2] Computer Failure Data Repository.
http://cfdr.usenix.org.

[3] Ganglia. http://ganglia.info.

[4] OVIS. http://ovis.ca.sandia.gov.

[5] J. Brandt, B. Debusschere, A. Gentile, J. Mayo,
P. Pébay, D. Thompson, and M. Wong. Using
probabilistic characterization to reduce runtime faults
on hpc systems. In Proc. of the 23rd International
Parallel and Distributed Processing Symposium
(Workshop on Resiliency in High-Performance
Computing), Lyon, France, May 2008.

[6] J. Brandt, A. Gentile, B. Debusschere, J. Mayo,
P. Pebay, D. Thompson, and M. Wong. OVIS 2: A
robust distributed architecture for scalable RAS. In
Proc. of the 22nd IEEE International Parallel &
Distributed Processing Symposium (4th Workshop on
System Management Techniques, Processes, and
Services), Miami, FL, Apr. 2008.

[7] J. M. Brandt, A. C. Gentile, Y. M. Marzouk, and
P. P. Pébay. Meaningful automated statistical analysis
of large computational clusters. In IEEE Cluster 2005,
Boston, MA, Sept. 2005. Extended Abstract.

[8] J. T. Daly. Performance challenges for extreme scale
computing.
http://www.pdsi-scidac.org/publications/, Oct.
2007.

[9] S. Fu and C.-Z. Xu. Exploring event correlation for
failure prediction in coalitions of clusters. In
Proceedings of SC’07, Reno, NV, Nov. 2007.

[10] N. R. Gottumukkala, Y. Liu, C. B. Leangsuksun,
R. Nassar, and S. Scott. Reliability analysis in hpc
clusters. In Proc. of High Availability and Performance
Computing Workshop 2006, Sante Fe, NM, Oct. 2006.

[11] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam,
and R. Sahoo. Bluegene/l failure analysis and
prediction models. In Proc. of the 2006 International
Conference on Dependable Systems and Networks,
Philadelphia, PA, June 2006.

[12] R. A. Oldfield. Investigating lightweight storage and
overlay networks for fault tolerance. In High
Availability and Performance Computing Workshop,
Santa Fe, New Mexico, Oct. 2006.

[13] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta,
and A. Sivasubramaniam. Fault-aware job scheduling
for blue gene/l systems. In Proc. of the International
Parallel and Distributed Processing Symposium, Santa
Fe, NM, Apr. 2004.

[14] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. In
Proc. of the 2006 International Conference on
Dependable Systems and Networks, Philadelphia, PA,
June 2006.

[15] B. Schroeder and G. A. Gibson. Understanding
failures in petascale computers. In Journal of Physics:
Conf. Ser. 78, June 2007.

[16] J. Stearley and A. Oliner. Bad words: Finding faults
in spirit’s syslogs. In Proc. of the 23rd International
Parallel and Distributed Processing Symposium
(Workshop on Resiliency in High-Performance
Computing), Lyon, France, May 2008.

Figure 1: Top: OVIS GUI provides the analyst with components and associated metrics (L), geometrically
correct physical 3D representation of the cluster (C), and access to analysis engines (R). Metrics are dragged
onto either the physical view or the analysis box for display or processing. Bottom: The Glory cluster with
the results of Monitor coloring the cluster. Outliers on the high side are colored blue whereas outliers on the
low side (non-existent in this case) are colored red and everything else is colored green. Since an outlier at
one time may not be an outlier for all time, all nodes flagged as outliers in Figure 3 do not show up at the
same time on the physical view.

